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The landmark computation of the generalized Bessel function distribution of the first kind (GBFD1K) is its most 
efficient computation for values of the variable greater than zero and less than infinity and for non-integer values of 
another parameter. GBFD1K is split into three segments from zero to one, from one to twenty-three to thirty-seven 
and from that parameter between twenty-three to thirty-seven to less than infinity. The efficient computation of 
GBFD1K for the first segment two segments is performed using any of the formulae already developed earlier in 
Progri 2016 and 2018. The landmark computation of the third segment takes advantage of a cleaver recursive 
expansion that leads to the computation of the Progri L function for the non-integer values of another parameter. In 
order to compare and contrast the landmark computation with the other efficient computation of GBFD1K a 
significant improvement of the latter was employed making use of the properties of the exponential, logarithmic 
functions, and the landmark computation of the regularized incomplete gamma function (RIGF). According to the 
numerical results derived for each case to validate the theoretical models presented in the paper, the landmark 
computation via the Progri L function is faster and just as accurate than the efficient computation of GBFD1K for 
non-integer values of another parameter via MATLAB gammainc built in function (BIF) or Giftet pgammainc BIF. 
This paper the pinnacle of the wealth of computation wisdom and knowledge that was generated from the assessment 
of computation of the GBIFD1K cdd via the Kampé de Fériet function during the last few years. 
Index Terms—Bessel functions, modified Bessel functions, cumulative distribution function, Kampé de Fériet 
function, Progri L function, incomplete gamma functions, hypergeometric series, landmark computation. 
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1 Introduction 

The discovery of the landmark computation of the generalized 
Bessel function cumulative distribution functions (cdf) of the 
first kind (GBFD1K) for integer and non-integer values of the 
parameter 𝑝𝑝  did neither happen by accident nor did it occur 
immediately. From Progri (2016, [1]) until Progri (2021, [12]) 
there is a total of twelve journal papers that I developed in the 
past six years in which I have accumulated a remarkable wealth 
of computational wisdom, knowledge, and understanding. 

What does this computational wisdom, knowledge, and 
understanding consist of? 

In addition to what is already explained in Progri (2022, [1]), 
it became clear to me that the computation of the exponential 
functions for negative exponents and the computation of the 
regularized (or normalized) incomplete gamma function (RIGF) 
needed to be fully investigated as in Progri (2022, [14]) and 
Progri (2022, [15]).  

Why is this so significant? It is significant because in Progri 
(2022, [15]) the computation of the RIGF revealed that the 
MATLAB integral built in function (BIF) is more accurate than 
the MATLAB gammainc BIF. Therefore, I decided to keep the 
computation of the GBFD1K via the MATLAB integral BIF as 
the truth and replace the linear approximation function with the 
computation of the GBFD1K via the MATLAB gammainc BIF 
or via the Giftet pgammainc function. 

Second, the landmark computation of the GBFD1K via the 
Kampé de Fériet functions has a profoundly, entirely new 
understanding in Giftet kamdefer BIF. The first closed form 
expression (CFE) of the Kampé de Fériet functions comes from 
the application of the power series expansion of the exponential 
functions for negative exponents Progri (2022, [14]) with the 
smallest region of conversion 0 ≤ 𝑥𝑥 < 1 .  The second set of 
CFEs of the Kampé de Fériet functions comes from the 
application of the Kummer’s first transformation in Progri 
(2022, [15]). In Progri (2022, [15]) Kummer’s first 
transformation is unique and it significantly expands the region 
of conversion of the variable 𝑥𝑥. As an illustration, if the non-
integer parameter 𝑝𝑝 = 1.5 then the region of convergence for 
the accurate computation of the Kampé de Fériet functions is 
expanded to 0 ≤ 𝑥𝑥 < 24.  For values of 24 ≤ 𝑥𝑥 < ∞ another 
expression of Nielsen (1906, [16]) was employed for the first 
time in this paper. 

Third, a recursive algorithm for computing the GBFD1K for 

large values of 𝑥𝑥 proved to be very computationally efficient 
and more accurate than any of the previous computation of the 
GBDF1K cdf. Therefore, the computation of the GBFD1K cdf 
via Kampé de Fériet functions for large values of 𝑥𝑥 is no longer 
needed. Because the Kampé de Fériet functions occur in pairs 
this journal paper provides the reduction formulae for each case 
for the Kampé de Fériet functions that either were not clearly 
explained or were lacking. 

Fourth, this journal paper provides landmark improvements 
in the numerical, theoretical results Sect. 5 that is published in 
this journal paper for the first time. 
1. Significant improvements in the computation of the 

MATLAB integral BIF. 
2. Inclusion for the first time of the computation of the 

GBFD1K via MATLAB gammainc BIF and Giftet 
pgammainc BIF. 

3. Landmark improvements of the computation of the 
GBFD1K via Giftet kamdefer (Kampé de Fériet functions) 
BIF. 

4. The development of the Giftet progril2 BIF designed to 
implement the best of the computational speed algorithms 
with the best of the performance accuracy algorithms. 

According to the MATLAB simulation results in Sect. 4, the 
computation of the GBFD1K cdf via the Giftet progril2 BIF is 
the most efficient computation in both computational speed and 
accuracy. 

This paper is organized as follows: in Sect. 2 the landmark 
computation of the GBFD1K via Kampé de Fériet functions is 
discussed. The landmark efficient computation of the GBFD1K 
for non-integer values of a parameter is presented in Sect. 3. 
Kampé de Fériet functions reduction formulae are derived in 
Sect. 4. Section 5 contains numerical, theoretical results; 
Conclusion is provided in Sect. 6 along with acknowledgement 
and a list of references. In Appendix A, a modified expression 
of the GBFD1K for integer values is provided that needed some 
clarification from Progri (2022, [13]). 

2 Landmark Computation of the GBFD1K via 
Kampé de Fériet Functions 

In this section the landmark computation of the GBFD1K is 
given via the Kampé de Fériet functions that relates the earlier 
research that I published in Progri (2016, [1]), Progri (2018, [5]) 
that needs further explanation, clarification, and 
implementation for large values of the variable 𝑥𝑥. 
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For the reason I produced two journal papers: one that deals 
with the computation of the exponential functions for negative 
exponents in Progri (2022, [14]) and the other that describe the 
computation of the RIGF in Progri (2022, [15]). 

Unfortunately, in Progri (2016, [1]) and Progri (2018, [5]) I 
proposed the computation of the IGF not the RIGF which led 
to computational problems for large values of the variable 𝑥𝑥. 

In comparison and contrast to Progri (2016, [1] (80)) the 
GBFD1K cdf that employed the IGF definition, here I have 
utilized the RIGF [15] instead; hence, the GBFD1K cdf is given 
by: 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) = 1
𝐶𝐶1(𝑑𝑑,𝑝𝑝)

∑ ∫ 𝑡𝑡2𝑝𝑝+2𝑘𝑘𝑒𝑒−𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡𝑥𝑥
0
𝑘𝑘!Γ(𝑝𝑝2+𝑘𝑘)2𝑝𝑝+2𝑘𝑘

∞
𝑘𝑘=0   

= 1
𝐶𝐶1(𝑑𝑑,𝑝𝑝)

∑
𝛾𝛾′(2𝑝𝑝1+2𝑘𝑘,𝑡𝑡𝑥𝑥)

𝑡𝑡2𝑝𝑝1+2𝑘𝑘

𝑘𝑘!Γ(𝑝𝑝2+𝑘𝑘)2𝑝𝑝+2𝑘𝑘
∞
𝑘𝑘=0   

= 𝜌𝜌(𝑑𝑑, 𝑝𝑝)∑ 𝛾𝛾′(2𝑝𝑝1+2𝑘𝑘,𝑑𝑑𝑑𝑑)
Γ(2𝑝𝑝1+2𝑘𝑘)

(𝑝𝑝1)𝑘𝑘
1

𝑡𝑡2𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0    

= 𝜌𝜌(𝑑𝑑, 𝑝𝑝)∑
𝛾𝛾(2𝑝𝑝1+2𝑘𝑘,𝑑𝑑𝑑𝑑)(𝑝𝑝1)𝑘𝑘

1
𝑡𝑡2𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0    

≅ 𝜌𝜌(𝑑𝑑, 𝑝𝑝)∑
𝛾𝛾(2𝑝𝑝1+2𝑘𝑘,𝑑𝑑𝑑𝑑)(𝑝𝑝1)𝑘𝑘

1
𝑡𝑡2𝑘𝑘

𝑘𝑘!
𝐾𝐾
𝑘𝑘=0  (1) 

Where the normalization coefficient 𝜌𝜌(𝑑𝑑, 𝑝𝑝) is given by 

𝜌𝜌(𝑑𝑑, 𝑝𝑝) = �1 − 1
𝑑𝑑2
�
𝑝𝑝1

 (2) 

In Progri (2016, [1] (80)) the GBFD1K cdf is given by: 
𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) = 𝜌𝜌(𝑑𝑑, 𝑝𝑝)[𝐹𝐹1𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) − 𝐹𝐹1𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝)] (3) 

In order to produce (3), the region of convergence is from 
0 ≤ 𝑥𝑥 < 1, from Progri (2018, [5]) we can compute the RIGF 
in (1) as follows 

𝛾𝛾�2𝑝𝑝1 + 2𝑘𝑘,𝑑𝑑𝑥𝑥� = 𝛾𝛾′�2𝑝𝑝1+2𝑘𝑘,𝑑𝑑𝑥𝑥�
Γ�2𝑝𝑝1+2𝑘𝑘�

  

=
(𝑡𝑡𝑥𝑥)2𝑝𝑝1+2𝑘𝑘

2
Γ(2𝑝𝑝1+2𝑘𝑘) ��

1
(𝑝𝑝1+𝑘𝑘)

∑ (𝑝𝑝1+𝑘𝑘)𝑚𝑚𝑑𝑑2
𝑚𝑚

(𝑝𝑝3+𝑘𝑘)𝑚𝑚�
1
2�𝑚𝑚

𝑚𝑚!
∞
𝑚𝑚=0 −

𝑑𝑑𝑑𝑑
(𝑝𝑝2+𝑘𝑘)

∑ (𝑝𝑝2+𝑘𝑘)𝑚𝑚𝑑𝑑2
𝑚𝑚

(𝑝𝑝4+𝑘𝑘)𝑚𝑚�
3
2
�
𝑚𝑚
𝑚𝑚!

∞
𝑚𝑚=0

  

= (𝑑𝑑𝑥𝑥)2𝑝𝑝1
�

�
(𝑑𝑑𝑑𝑑)2𝑘𝑘 ∑

(𝑝𝑝1+𝑘𝑘)𝑚𝑚𝑥𝑥2
𝑚𝑚

(𝑝𝑝3+𝑘𝑘)𝑚𝑚�12�𝑚𝑚
𝑚𝑚!

∞
𝑚𝑚=0

Γ(2𝑝𝑝2+2𝑘𝑘)
−

𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑)2𝑘𝑘 ∑
(𝑝𝑝2+𝑘𝑘)𝑚𝑚𝑥𝑥2

𝑚𝑚

(𝑝𝑝4+𝑘𝑘)𝑚𝑚�3
2�𝑚𝑚

𝑚𝑚!
∞
𝑚𝑚=0

(2𝑝𝑝1+2𝑘𝑘)−1Γ(2𝑝𝑝3+2𝑘𝑘)

  

= √𝜋𝜋 �𝑑𝑑𝑑𝑑2 �
2𝑝𝑝1

�

�
�𝑡𝑡𝑥𝑥2 �

2𝑘𝑘
∑

(𝑝𝑝1+𝑘𝑘)𝑚𝑚𝑥𝑥2
𝑚𝑚

(𝑝𝑝3+𝑘𝑘)𝑚𝑚�12�𝑚𝑚
𝑚𝑚!

∞
𝑚𝑚=0

Γ(𝑝𝑝2+𝑘𝑘)Γ(𝑝𝑝3+𝑘𝑘)
−

𝑑𝑑𝑑𝑑�𝑡𝑡𝑥𝑥2 �
2𝑘𝑘

∑
(𝑝𝑝2+𝑘𝑘)𝑚𝑚𝑥𝑥2

𝑚𝑚

(𝑝𝑝4+𝑘𝑘)𝑚𝑚�3
2�𝑚𝑚

𝑚𝑚!
∞
𝑚𝑚=0

(2𝑝𝑝1+2𝑘𝑘)−12Γ(𝑝𝑝3+𝑘𝑘)Γ(𝑝𝑝4+𝑘𝑘)

  

= √𝜋𝜋𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2) �

�
�𝑡𝑡𝑥𝑥2 �

2𝑘𝑘
∑

(𝑝𝑝1+𝑘𝑘)𝑚𝑚𝑥𝑥2
𝑚𝑚

(𝑝𝑝3+𝑘𝑘)𝑚𝑚�12�𝑚𝑚
𝑚𝑚!

∞
𝑚𝑚=0

(𝑝𝑝3)𝑘𝑘(𝑝𝑝2)𝑘𝑘
−

𝑑𝑑𝑑𝑑𝑝𝑝1�
𝑡𝑡𝑥𝑥
2 �

2𝑘𝑘
∑

(𝑝𝑝2+𝑘𝑘)𝑚𝑚𝑥𝑥2
𝑚𝑚

(𝑝𝑝4+𝑘𝑘)𝑚𝑚�3
2�𝑚𝑚

𝑚𝑚!
∞
𝑚𝑚=0

𝑝𝑝2(𝑝𝑝4)𝑘𝑘(𝑝𝑝1)𝑘𝑘

 (4) 

where the functions, 𝐹𝐹1𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) and 𝐹𝐹1𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝)  can be 
computed from 

𝐹𝐹1𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) = √𝜋𝜋𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
∑ (𝑝𝑝1)𝑘𝑘+𝑚𝑚

(𝑝𝑝3)𝑘𝑘+𝑚𝑚(𝑝𝑝2)𝑘𝑘�
1
2�𝑚𝑚

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
𝑑𝑑2
𝑚𝑚

𝑚𝑚!
∞
𝑘𝑘,𝑚𝑚=0   

= √𝜋𝜋𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
𝐹𝐹1:1;1
1:0;0 �

𝑝𝑝1:−;−;
𝑝𝑝3: 𝑝𝑝2; 1

2
𝑥𝑥1, 𝑥𝑥2�  

= √𝜋𝜋𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
𝐾𝐾1𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) (5) 

𝐹𝐹1𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) = √𝜋𝜋𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
𝑑𝑑𝑑𝑑𝑝𝑝1
𝑝𝑝2

∑ (𝑝𝑝2)𝑘𝑘+𝑚𝑚
(𝑝𝑝4)𝑘𝑘+𝑚𝑚(𝑝𝑝2)𝑘𝑘�

3
2
�
𝑚𝑚

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘,𝑚𝑚=0

𝑑𝑑2
𝑚𝑚

𝑚𝑚!
   

= √𝜋𝜋𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
𝑑𝑑𝑑𝑑𝑝𝑝1
𝑝𝑝2

𝐹𝐹1:1;1
1:0;0 �

𝑝𝑝2:−;−;
𝑝𝑝4: 𝑝𝑝2; 3

2
𝑥𝑥1, 𝑥𝑥2�  

= √𝜋𝜋𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
𝑑𝑑𝑑𝑑𝑝𝑝1
𝑝𝑝2

𝐾𝐾1𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) (6) 

the even and odd Kampé de Fériet functions, 𝐾𝐾1𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) and 
𝐾𝐾1𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝), are discussed in great detail in Progri (2018, [5], 
Progri (2019, [6]). 

Substituting (5) and (6) into (4) and factoring out the 
common terms we obtain for 0 ≤ 𝑥𝑥 < 1: 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) =
𝜌𝜌(𝑑𝑑,𝑝𝑝)√𝜋𝜋𝑑𝑑2

𝑝𝑝1�𝐾𝐾1𝑒𝑒(𝑑𝑑,𝑑𝑑,𝑝𝑝)−𝑡𝑡𝑥𝑥𝑝𝑝1𝐾𝐾1𝑜𝑜(𝑥𝑥,𝑡𝑡,𝑝𝑝)
𝑝𝑝2

�

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
 (7) 

Let us compare and contrast (7) with (see Progri (2018, [5]) 
(49) 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) =
𝑑𝑑2𝑝𝑝1�𝐾𝐾1𝑒𝑒(𝑑𝑑,𝑑𝑑,𝑝𝑝)−𝑡𝑡𝑥𝑥𝑝𝑝1𝐾𝐾1𝑜𝑜(𝑥𝑥,𝑡𝑡,𝑝𝑝)

𝑝𝑝2
�

𝐶𝐶11
−1(𝑑𝑑,𝑝𝑝)

 (8) 

Where 

𝐶𝐶11(𝑑𝑑, 𝑝𝑝) = �𝑑𝑑2−1�
𝑝𝑝1

Γ(2𝑝𝑝2)
≡ √𝜋𝜋�𝑑𝑑2−1�

𝑝𝑝1

4𝑝𝑝1Γ(𝑝𝑝2)Γ(𝑝𝑝3)
 (9) 

For (7) and (8) to be identical if and only if 

Γ(2𝑝𝑝2) ≡ 4𝑝𝑝1

√𝜋𝜋
Γ(𝑝𝑝2)Γ(𝑝𝑝3) (10) 
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𝜌𝜌(𝑑𝑑,𝑝𝑝)√𝜋𝜋𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
≡ 𝐶𝐶11(𝑑𝑑, 𝑝𝑝)𝑥𝑥2𝑝𝑝1 (11) 

Which shows that the derivation in Progri (2018, [5]) are 
correct. 

Next, we derive the equations of the GBFD1K cdf for the 
values of 0 ≤ 𝑥𝑥 ≤ 37; hence, the GBFD1K cdf takes the form 
of 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) = 𝐹𝐹2𝑒𝑒(𝑑𝑑,𝑑𝑑,𝑝𝑝)+𝐹𝐹2𝑜𝑜(𝑑𝑑,𝑑𝑑,𝑝𝑝)
𝜌𝜌−1(𝑑𝑑,𝑝𝑝)

 (12) 

The region of convergence of the RIGF in (1) to produce (12) 
is assumed to be 0 ≤ 𝑥𝑥 ≤ 37; hence, the RIGF in (1) can be 
written as 

𝛾𝛾�2𝑝𝑝1 + 2𝑘𝑘,𝑑𝑑𝑥𝑥� = 𝛾𝛾′�2𝑝𝑝1+2𝑘𝑘,𝑑𝑑𝑥𝑥�
Γ�2𝑝𝑝1+2𝑘𝑘�

  

= (𝑑𝑑𝑑𝑑)2𝑝𝑝1+2𝑘𝑘𝑒𝑒−𝑡𝑡𝑥𝑥

Γ(2𝑝𝑝2+2𝑘𝑘) ��
∑ 𝑑𝑑2

𝑚𝑚

(𝑝𝑝3+𝑘𝑘)𝑚𝑚(𝑝𝑝2+𝑘𝑘)𝑚𝑚
∞
𝑚𝑚=0 +

𝑡𝑡𝑥𝑥
2 ∑ 𝑥𝑥2

𝑚𝑚

(𝑝𝑝4+𝑘𝑘)𝑚𝑚(𝑝𝑝3+𝑘𝑘)𝑚𝑚
∞
𝑚𝑚=0

(𝑝𝑝2+𝑘𝑘)

  

=
√𝜋𝜋�

𝑡𝑡𝑥𝑥
2 �

2𝑝𝑝1+2𝑘𝑘
𝑒𝑒−𝑡𝑡𝑥𝑥

Γ(𝑝𝑝2+𝑘𝑘)Γ(𝑝𝑝3+𝑘𝑘) ��
∑ 𝑑𝑑2

𝑚𝑚

(𝑝𝑝3+𝑘𝑘)𝑚𝑚(𝑝𝑝2+𝑘𝑘)𝑚𝑚
∞
𝑚𝑚=0 +

𝑡𝑡𝑥𝑥
2 ∑ 𝑥𝑥2

𝑚𝑚

(𝑝𝑝4+𝑘𝑘)𝑚𝑚(𝑝𝑝3+𝑘𝑘)𝑚𝑚
∞
𝑚𝑚=0

(𝑝𝑝2+𝑘𝑘)

  

= √𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)

�𝑡𝑡𝑥𝑥2 �
2𝑘𝑘

�
�
∑ 𝑥𝑥2

𝑚𝑚

(𝑝𝑝3+𝑘𝑘)𝑚𝑚(𝑝𝑝2+𝑘𝑘)𝑚𝑚
∞
𝑚𝑚=0 +

𝑡𝑡𝑥𝑥
2 ∑ 𝑥𝑥2

𝑚𝑚
(𝑝𝑝4+𝑘𝑘)𝑚𝑚(𝑝𝑝3+𝑘𝑘)𝑚𝑚

∞
𝑚𝑚=0

(𝑝𝑝2+𝑘𝑘)

(𝑝𝑝3)𝑘𝑘(𝑝𝑝2)𝑘𝑘
 (13) 

where the functions, 𝐹𝐹2𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝)and 𝐹𝐹2𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) are given by 

𝐹𝐹2𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) = √𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
∑ (𝑝𝑝1)𝑘𝑘(1)𝑚𝑚

(𝑝𝑝3)𝑘𝑘+𝑚𝑚(𝑝𝑝2)𝑘𝑘+𝑚𝑚
∞
𝑘𝑘,𝑚𝑚=0

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
𝑑𝑑2
𝑚𝑚

𝑚𝑚!
  

= √𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
𝐹𝐹1:1;0
0:1;1 �−: 𝑝𝑝1; 1;

𝑝𝑝3: 𝑝𝑝2;−𝑥𝑥1, 𝑥𝑥2�  

= √𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝3)Γ(𝑝𝑝2)
𝐾𝐾2𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) (14) 

𝐹𝐹2𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) = √𝜋𝜋𝑑𝑑2
𝑝𝑝1𝑒𝑒−𝑡𝑡𝑥𝑥

Γ(𝑝𝑝4)Γ(𝑝𝑝3)
𝑑𝑑𝑑𝑑
2
∑ (𝑝𝑝1)𝑘𝑘(1)𝑚𝑚

(𝑝𝑝4)𝑘𝑘+𝑚𝑚(𝑝𝑝3)𝑘𝑘+𝑚𝑚

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
𝑑𝑑2
𝑚𝑚

𝑚𝑚!
∞
𝑘𝑘,𝑚𝑚=0   

= √𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝4)Γ(𝑝𝑝3) √𝑥𝑥2𝐹𝐹1:1;0
0:1;1 � −:𝑝𝑝1; 1;

𝑝𝑝4: 𝑝𝑝3;−;𝑥𝑥1, 𝑥𝑥2�  

= √𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2
𝑝𝑝1

Γ(𝑝𝑝4)Γ(𝑝𝑝3) √𝑥𝑥2𝐾𝐾2𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) (15) 

the Kampé de Fériet functions, 𝐾𝐾2𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) and 𝐾𝐾2𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) 
are discussed in great detail in Progri (2018, [5]), Progri (2019, 
[6]). 

Substituting (14) and (15) into (12) and factoring out the 

common terms we obtain for 0 ≤ 𝑥𝑥 ≤ 37: 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) =
𝜌𝜌(𝑑𝑑,𝑝𝑝)𝑑𝑑2

𝑝𝑝1√𝜋𝜋�𝐾𝐾2𝑒𝑒(𝑑𝑑,𝑑𝑑,𝑝𝑝)+�
𝑥𝑥2𝐾𝐾2𝑜𝑜(𝑥𝑥,𝑡𝑡,𝑝𝑝)

𝑝𝑝2
�

𝑒𝑒𝑡𝑡𝑥𝑥Γ(𝑝𝑝2)Γ(𝑝𝑝3)
 (16) 

Let us compare and contrast (16) with (see Progri (2018, [5]) 
(21) 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) =
𝑑𝑑2𝑝𝑝1𝑒𝑒−𝑡𝑡𝑥𝑥�𝐾𝐾2𝑒𝑒(𝑑𝑑,𝑑𝑑,𝑝𝑝)+�

𝑥𝑥2𝐾𝐾2𝑜𝑜(𝑥𝑥,𝑡𝑡,𝑝𝑝)
𝑝𝑝2

�

𝐶𝐶11
−1(𝑑𝑑,𝑝𝑝)

 (17) 

Again (17) and (16) are identical if and only if (9)-(11) are 
identical, which are true anyways; therefore, (16) and (17) are 
identical; which proves again that the derivations in Progri 
(2018, [5]) are correct. 

The issues in Progri (2018, [5]) were not the derivations; it 
had to do with understanding the regions of convergence for the 
Kampé de Fériet functions, 𝐾𝐾2𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝)and 𝐾𝐾2𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝). 

What was incorrect in Progri (2018, [5]) is that I incorrectly 
tried to apply (8) for values of 𝑥𝑥 > 1 and (17) for values of 𝑥𝑥 >
37; i.e., I failed to put these CFEs in the correct context and I 
failed to produce the correct CFEs for values of 𝑥𝑥 ≥ 37. 

Lucky I was able to fix this problem here. Finally, for values 
of 𝑥𝑥 ≥ 37 the GBFD1K cdf is given by 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) =
∑

1−
(𝑡𝑡𝑥𝑥)2𝑝𝑝+2𝑘𝑘∑ (−1)𝑚𝑚(2𝑘𝑘−2𝑝𝑝)𝑚𝑚

(𝑡𝑡𝑥𝑥)𝑚𝑚
𝑀𝑀
𝑚𝑚=0

𝑒𝑒𝑡𝑡𝑥𝑥Γ(2𝑝𝑝1+2𝑘𝑘)
(𝑝𝑝1)𝑘𝑘

1
𝑡𝑡2𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0

𝜌𝜌−1(𝑑𝑑,𝑝𝑝)
  

= 𝐹𝐹(𝑑𝑑,𝑝𝑝)−𝐹𝐹3(𝑑𝑑,𝑑𝑑,𝑝𝑝)
𝜌𝜌−1(𝑑𝑑,𝑝𝑝)

 (18) 

where the hypergeometric function, 𝐹𝐹(𝑑𝑑, 𝑝𝑝), and the Kampé de 
Fériet functions, 𝐹𝐹3(𝑥𝑥,𝑑𝑑, 𝑝𝑝)  (see Progri (2018, [5]), Progri 
(2019, [6])) can be computed from 
𝐹𝐹(𝑑𝑑, 𝑝𝑝) = 𝐹𝐹[𝑝𝑝1,−;𝑑𝑑−2] = 𝜌𝜌−1(𝑑𝑑, 𝑝𝑝)i (19) 

𝐹𝐹3(𝑥𝑥,𝑑𝑑, 𝑝𝑝) = ∑
𝑒𝑒−𝑡𝑡𝑥𝑥(𝑡𝑡𝑥𝑥)2𝑝𝑝+2𝑘𝑘∑ (−1)𝑚𝑚(2𝑘𝑘−2𝑝𝑝)𝑚𝑚

(𝑡𝑡𝑥𝑥)𝑚𝑚
𝑀𝑀
𝑚𝑚=0

Γ(2𝑝𝑝1+2𝑘𝑘) (𝑝𝑝1)𝑘𝑘
1

𝑡𝑡2𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0   

=
√𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥�

𝑡𝑡𝑥𝑥
2 �

2𝑝𝑝

Γ(𝑝𝑝1)Γ(𝑝𝑝2)
∑

∑ (−1)𝑚𝑚(2𝑘𝑘−2𝑝𝑝)𝑚𝑚
(𝑡𝑡𝑥𝑥)𝑚𝑚

𝑀𝑀
𝑚𝑚=0

(𝑝𝑝2)𝑘𝑘

𝑥𝑥2𝑘𝑘

22𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0  (20) 

In order to compute (29) the Pochhammer symbol, 
(2𝑘𝑘 − 2𝑝𝑝)𝑚𝑚, must be split into two: one for even 𝑚𝑚 and one for 
odd 𝑚𝑚.  From Progri (2018, [3] (11) we have 

(2𝑘𝑘 − 2𝑝𝑝)𝑚𝑚=2𝑛𝑛 = Γ(2𝑘𝑘−2𝑝𝑝+2𝑛𝑛)
Γ(2𝑘𝑘−2𝑝𝑝)

  

=
4𝑘𝑘+𝑛𝑛Γ(𝑘𝑘−𝑝𝑝+𝑛𝑛)Γ�𝑘𝑘−𝑝𝑝+12+𝑛𝑛�

2−2𝑝𝑝1√𝜋𝜋
22𝑘𝑘−2𝑝𝑝−1Γ(𝑘𝑘−𝑝𝑝)Γ�𝑘𝑘−𝑝𝑝+12�

√𝜋𝜋

  

= 4𝑛𝑛(𝑘𝑘 − 𝑝𝑝)𝑛𝑛 �𝑘𝑘 − 𝑝𝑝 + 1
2
�
𝑛𝑛

 (21) 
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And for odd 𝑚𝑚 

(2𝑘𝑘 − 2𝑝𝑝)𝑚𝑚=2𝑛𝑛+1 = Γ(2𝑘𝑘−2𝑝𝑝+2𝑛𝑛+1)
Γ(2𝑘𝑘−2𝑝𝑝)

  

=
4𝑘𝑘+𝑛𝑛+0.5Γ�𝑘𝑘−𝑝𝑝+𝑛𝑛+12�Γ(𝑘𝑘−𝑝𝑝+1+𝑛𝑛)

2−2𝑝𝑝1√𝜋𝜋
22𝑘𝑘−2𝑝𝑝−1Γ(𝑘𝑘−𝑝𝑝)Γ�𝑘𝑘−𝑝𝑝+12�

√𝜋𝜋

  

=
�𝑘𝑘−𝑝𝑝+12�𝑛𝑛

(𝑘𝑘−𝑝𝑝+1)𝑛𝑛

2−1×4−𝑛𝑛(𝑘𝑘−𝑝𝑝)−1
 (22) 

Equation (20) will be split into two coefficients: even and 
odd 
𝐹𝐹3(𝑥𝑥,𝑑𝑑, 𝑝𝑝) = 𝐹𝐹3𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) + 𝐹𝐹3𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) (23) 

𝐹𝐹3𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) =
√𝜋𝜋�

𝑡𝑡𝑥𝑥
2 �

2𝑝𝑝
∑

(−𝑝𝑝)𝑘𝑘+𝑛𝑛�−𝑝𝑝+
1
2�𝑘𝑘+𝑛𝑛

(1)𝑛𝑛

(−𝑝𝑝)𝑘𝑘�−𝑝𝑝+
1
2�𝑘𝑘

(𝑝𝑝2)𝑘𝑘

𝑥𝑥2𝑘𝑘

22𝑘𝑘
𝑘𝑘!

4𝑛𝑛
(𝑡𝑡𝑥𝑥)2𝑛𝑛
𝑛𝑛!

∞
𝑘𝑘,𝑛𝑛=0

𝑒𝑒𝑡𝑡𝑥𝑥Γ(𝑝𝑝1)Γ(𝑝𝑝2)
  

=
√𝜋𝜋𝑑𝑑2

𝑝𝑝𝑒𝑒−𝑡𝑡𝑥𝑥 ∑
(−𝑝𝑝)𝑘𝑘+𝑛𝑛�−𝑝𝑝+

1
2�𝑘𝑘+𝑛𝑛

(1)𝑛𝑛

(−𝑝𝑝)𝑘𝑘�−𝑝𝑝+
1
2�𝑘𝑘

(𝑝𝑝2)𝑘𝑘

𝑥𝑥1
𝑘𝑘

𝑘𝑘!
𝑥𝑥2
−𝑛𝑛

𝑛𝑛!
∞
𝑘𝑘,𝑛𝑛=0

Γ(𝑝𝑝1)Γ(𝑝𝑝2)
  

=
√𝜋𝜋𝑑𝑑2

𝑝𝑝𝑒𝑒−𝑡𝑡𝑥𝑥𝐹𝐹0:3;0
2:0;1�

−𝑝𝑝,−𝑝𝑝+12:−;1;

−;−𝑝𝑝,−𝑝𝑝+12,𝑝𝑝2;−;
𝑑𝑑1,𝑑𝑑2−1�

Γ(𝑝𝑝1)Γ(𝑝𝑝2)
  

= √𝜋𝜋𝑑𝑑2
𝑝𝑝𝑒𝑒−𝑡𝑡𝑥𝑥

Γ(𝑝𝑝1)Γ(𝑝𝑝2)
𝐾𝐾3𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) (24) 

𝐹𝐹3𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) =
√𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥�

𝑡𝑡𝑥𝑥
2 �

2𝑝𝑝

Γ(𝑝𝑝1)Γ(𝑝𝑝2)
∑

(−1)2𝑛𝑛+1(2𝑘𝑘−2𝑝𝑝)2𝑛𝑛+1
(𝑡𝑡𝑥𝑥)2𝑛𝑛+1

(𝑝𝑝2)𝑘𝑘

𝑥𝑥2𝑘𝑘

22𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘,𝑛𝑛=0   

=
𝑝𝑝√𝜋𝜋�

𝑡𝑡𝑥𝑥
2 �

2𝑝𝑝−1
∑

�−𝑝𝑝+12�𝑘𝑘+𝑛𝑛
(−𝑝𝑝+1)𝑘𝑘+𝑛𝑛(1)𝑛𝑛

(−𝑝𝑝)𝑘𝑘�−𝑝𝑝+
1
2�𝑘𝑘

(𝑝𝑝2)𝑘𝑘

𝑥𝑥1
𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘,𝑛𝑛=0

𝑥𝑥2
−𝑛𝑛

𝑛𝑛!

𝑒𝑒𝑡𝑡𝑥𝑥Γ(𝑝𝑝1)Γ(𝑝𝑝2)
  

=
𝑝𝑝√𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2

𝑝𝑝−12𝐹𝐹0:3;0
2:0;1�

−𝑝𝑝+12,−𝑝𝑝+1:−;1;

−;−𝑝𝑝,−𝑝𝑝+12,𝑝𝑝2;−;
𝑑𝑑1,𝑑𝑑2−1�

Γ(𝑝𝑝1)Γ(𝑝𝑝2)
  

= 𝑝𝑝√𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2
𝑝𝑝−12

Γ(𝑝𝑝1)Γ(𝑝𝑝2)
𝐾𝐾3𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) (25) 

where the Kampé de Fériet functions, 𝐾𝐾3𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝)  and 
𝐾𝐾3𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝)  can be computed from (see Progri (2018, [5]), 
Progri (2019, [6])). 

The computation of the Kampé de Fériet functions, 
𝐾𝐾3𝑒𝑒(𝑥𝑥,𝑑𝑑,𝑝𝑝) and 𝐾𝐾3𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝), is simplified when  

−𝑝𝑝 + 1
2

= −𝑚𝑚 ≡ −{0,1,⋯ } ⇒ 𝑝𝑝 = [𝑚𝑚 ≡ {0,1,⋯ }] − 1
2
 (26) 

Substituting (26) we obtain two simplified expressions of the 
Kampé de Fériet functions, 𝐾𝐾3𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝)  and 𝐾𝐾3𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) , is 
simplified when  

𝐾𝐾3𝑒𝑒(𝑥𝑥,𝑑𝑑,𝑝𝑝) = ∑
(−𝑝𝑝)𝑘𝑘+𝑛𝑛�−𝑝𝑝+

1
2�𝑘𝑘+𝑛𝑛

(1)𝑛𝑛

(−𝑝𝑝)𝑘𝑘�−𝑝𝑝+
1
2�𝑘𝑘

(𝑝𝑝2)𝑘𝑘

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
𝑑𝑑2
−𝑛𝑛

𝑛𝑛!
∞
𝑘𝑘,𝑛𝑛=0   

= ∑ (−𝑝𝑝+𝑘𝑘)𝑛𝑛(−𝑚𝑚+𝑘𝑘)𝑛𝑛(1)𝑛𝑛
(𝑝𝑝2)𝑘𝑘

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
𝑚𝑚−1,∞
𝑘𝑘,𝑛𝑛=0

𝑑𝑑2
−𝑛𝑛

𝑛𝑛!
  

= ∑
𝐹𝐹�𝑘𝑘−𝑚𝑚,𝑘𝑘−𝑝𝑝+1,1

−,−,− ;𝑑𝑑2
−1�

(𝑝𝑝2)𝑘𝑘

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
𝑚𝑚−1
𝑘𝑘=0  (27) 

𝐾𝐾3𝑜𝑜(𝑥𝑥,𝑑𝑑, 𝑝𝑝) = ∑
�−𝑝𝑝+12+𝑘𝑘�𝑛𝑛

(−𝑝𝑝+1)𝑘𝑘+𝑛𝑛(1)𝑛𝑛

(−𝑝𝑝)𝑘𝑘(𝑝𝑝2)𝑘𝑘

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘,𝑛𝑛=0

𝑑𝑑2
−𝑛𝑛

𝑛𝑛!
  

= ∑ (−𝑚𝑚+𝑘𝑘)𝑛𝑛(−𝑝𝑝+1+𝑘𝑘)𝑛𝑛(−𝑝𝑝+1)𝑘𝑘(1)𝑛𝑛
(−𝑝𝑝)𝑘𝑘(𝑝𝑝2)𝑘𝑘

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
𝑚𝑚−1,∞
𝑘𝑘,𝑛𝑛=0

𝑑𝑑2
−𝑛𝑛

𝑛𝑛!
  

= ∑
(−𝑝𝑝+1)𝑘𝑘𝐹𝐹�

𝑘𝑘−𝑚𝑚,𝑘𝑘−𝑝𝑝+1,1
−,−,− ;𝑑𝑑2

−1�

(−𝑝𝑝)𝑘𝑘(𝑝𝑝2)𝑘𝑘

𝑑𝑑1
𝑘𝑘

𝑘𝑘!
𝑚𝑚−1
𝑘𝑘=0  (28) 

Substituting (24) and (25) into (23) and factoring out the 
common terms, yields: 

𝐹𝐹3(𝑥𝑥,𝑑𝑑, 𝑝𝑝) =
√𝜋𝜋𝑒𝑒−𝑡𝑡𝑥𝑥𝑑𝑑2

𝑝𝑝�𝑝𝑝1𝐾𝐾3𝑒𝑒(𝑑𝑑,𝑑𝑑,𝑝𝑝)+𝑝𝑝𝑝𝑝1𝐾𝐾3𝑜𝑜(𝑥𝑥,𝑡𝑡,𝑝𝑝)
�𝑥𝑥2

�

Γ(𝑝𝑝2)Γ(𝑝𝑝3)
 (29) 

Finally, substituting (29) into (18) produces the desired CFE 
of the GBFD1K cdf for large values of 37 ≤ 𝑥𝑥 < ∞ 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) = 1 −
2𝑝𝑝1�𝐾𝐾3𝑒𝑒(𝑑𝑑,𝑑𝑑,𝑝𝑝)+𝑝𝑝𝐾𝐾3𝑜𝑜(𝑥𝑥,𝑡𝑡,𝑝𝑝)

�𝑥𝑥2
�

𝐶𝐶11
−1(𝑑𝑑,𝑝𝑝)𝑑𝑑−2𝑝𝑝𝑑𝑑𝑒𝑒𝑡𝑡𝑥𝑥

 (30) 

Equation (30) is an original CFE that I should have been 
produced in Progri (2018, [5]) that provides the much needed 
CFE of the GBFD1K cdf by means of Kampé de Fériet 
functions (see Progri (2018, [5]), Progri (2019, [6])) for values 
of the variable 37 ≤ 𝑥𝑥 < ∞. 

Equations (8), (17), and (30) provide a very good 
approximation for the GBFD1K cdf by means of Kampé de 
Fériet functions (see Progri (2018, [5]), Progri (2019, [6])) for 
values of the variable 0 ≤ 𝑥𝑥 < ∞. 

The only limitation that these CFEs (8), (17), and (30) is that 
they are not as computationally efficient as they should be; 
however, they led to the discovery of the most computationally 
efficient algorithms that are produced in this landmark journal 
paper.  

This concludes the discussion on the landmark computation 
of the GBFD1K cdf for non-integer values of a parameter by 
means of Kampé de Fériet functions (see Progri (2018, [5]), 
Progri (2019, [6])). 

3 Landmark Efficient Computation of the 
GBFD1K for Non-Integer Values of a 
Parameter 

In Sect. 2 I explained all the modifications that needed to be 
made in Progri (2016, [1]) (117) and Progri (2018, [5]) (23)-
(25), (49)-(51) as it relates to the region of convergence of 𝑥𝑥. 
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The only drawback in Sect. 2 is that CFEs (8), (17), and (30) 
are not as computationally efficient as some other approaches 
that are explained in the numerical results Sect. It is, therefore, 
the purpose of this section to derive the most computationally 
efficient CFEs of the GBFD1K cdf for non-integer values of a 
parameter. 

In Progri (2016, [1]) (107) to (114) I developed for the first 
time the landmark efficient computation of the GBFD1K for 
non-integer values of a parameter, 𝑝𝑝 . However, I failed to 
provide the context when such an expression can be used and 
how it should be used. 

First, I am rederiving Progri (2016, [1]) (113) in a slightly 
different way. 

Employing an identity from (Nelson) (see Gradshteyn, 
Ryzhik, 2007 [17] pg. 901 ex. 8.356 5.) 𝛾𝛾(2𝑝𝑝1 + 2𝑘𝑘,𝑑𝑑𝑥𝑥)  as 
follows: 

𝛾𝛾(2𝑝𝑝1 + 2𝑘𝑘,𝑑𝑑𝑥𝑥) = 𝛾𝛾(2𝑝𝑝1,𝑑𝑑𝑥𝑥) − 𝑒𝑒−𝑑𝑑𝑑𝑑 ∑ (𝑑𝑑𝑑𝑑)(2𝑝𝑝1+𝑛𝑛)

Γ(2𝑝𝑝2+𝑛𝑛)
2𝑘𝑘−1
𝑛𝑛=0   

= 𝛾𝛾(2𝑝𝑝1,𝑑𝑑𝑥𝑥) − 𝑒𝑒−𝑡𝑡𝑥𝑥(𝑑𝑑𝑑𝑑)2𝑝𝑝1

Γ(2𝑝𝑝2)
∑ (𝑑𝑑𝑑𝑑)𝑛𝑛

(2𝑝𝑝2)𝑛𝑛
2𝑘𝑘−1
𝑛𝑛=0  (31) 

Γ(2𝑝𝑝1 + 2𝑘𝑘,𝑑𝑑𝑥𝑥) = Γ(2𝑝𝑝1,𝑑𝑑𝑥𝑥) + 𝑒𝑒−𝑡𝑡𝑥𝑥(𝑑𝑑𝑑𝑑)2𝑝𝑝1

Γ(2𝑝𝑝2)
∑ (𝑑𝑑𝑑𝑑)𝑛𝑛

(2𝑝𝑝2)𝑛𝑛
2𝑘𝑘−1
𝑛𝑛=0  (32) 

Next, substituting (31) into (1) produces: 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) =
∑

𝛾𝛾�2𝑝𝑝1+2𝑘𝑘,𝑑𝑑𝑥𝑥��𝑝𝑝1�𝑘𝑘
1
𝑑𝑑2𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0

𝜌𝜌−1(𝑑𝑑,𝑝𝑝)
  

=
∑ ⎣

⎢
⎢
⎢
⎡

𝛾𝛾(2𝑝𝑝1,𝑡𝑡𝑥𝑥)−
𝑒𝑒−𝑑𝑑𝑥𝑥(𝑡𝑡𝑥𝑥)2𝑝𝑝1 ∑ (𝑡𝑡𝑥𝑥)𝑛𝑛

�2𝑝𝑝2�𝑛𝑛
2𝑘𝑘−1
𝑛𝑛=0

Γ�2𝑝𝑝2�
⎦
⎥
⎥
⎥
⎤
�𝑝𝑝1�𝑘𝑘
𝑑𝑑2𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0

𝜌𝜌−1(𝑑𝑑,𝑝𝑝)
  

=

�

�

� 𝛾𝛾(2𝑝𝑝1,𝑑𝑑𝑑𝑑)∑

�𝑝𝑝1�𝑘𝑘
𝑑𝑑2𝑘𝑘
𝑘𝑘!

∞
𝑘𝑘=0 −

(𝑡𝑡𝑥𝑥)2𝑝𝑝1 ∑
∑ (𝑡𝑡𝑥𝑥)𝑛𝑛

�2𝑝𝑝2�𝑛𝑛
2𝑘𝑘−1
𝑛𝑛=0

�𝑝𝑝1�𝑘𝑘
𝑑𝑑2𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0
𝑒𝑒𝑑𝑑𝑥𝑥Γ�2𝑝𝑝2�

𝜌𝜌−1(𝑑𝑑,𝑝𝑝)
  

= 𝐿𝐿1(𝑑𝑑, 𝑝𝑝, 𝑥𝑥) − 𝐿𝐿2(𝑑𝑑, 𝑝𝑝, 𝑥𝑥) (33) 
where 

𝐿𝐿1(𝑑𝑑, 𝑝𝑝, 𝑥𝑥) =
∑

𝛾𝛾(2𝑝𝑝1,𝑡𝑡𝑥𝑥)
�𝑝𝑝1�𝑘𝑘
𝑑𝑑2𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0

𝜌𝜌−1(𝑑𝑑,𝑝𝑝)
= 𝛾𝛾(2𝑝𝑝1,𝑑𝑑𝑑𝑑)∑

�𝑝𝑝1�𝑘𝑘
𝑑𝑑2𝑘𝑘
𝑘𝑘!

∞
𝑘𝑘=0

𝜌𝜌−1(𝑑𝑑,𝑝𝑝)
  

= 𝛾𝛾�2𝑝𝑝1,𝑑𝑑𝑥𝑥�𝐹𝐹�𝑝𝑝1,−;𝑑𝑑−2�
𝜌𝜌−1(𝑑𝑑,𝑝𝑝) ≡ 𝛾𝛾�2𝑝𝑝1, 𝑑𝑑𝑥𝑥� (34) 

𝐿𝐿2(𝑑𝑑, 𝑝𝑝,𝑥𝑥) =
𝑒𝑒−𝑑𝑑𝑥𝑥(𝑑𝑑𝑑𝑑)2𝑝𝑝1 ∑ ∑ (𝑡𝑡𝑥𝑥)𝑛𝑛

�2𝑝𝑝2�𝑛𝑛
2𝑘𝑘−1
𝑛𝑛=0

�𝑝𝑝1�𝑘𝑘
𝑘𝑘!𝑑𝑑2𝑘𝑘

∞
𝑘𝑘=0

Γ�2𝑝𝑝2�𝜌𝜌−1(𝑑𝑑,𝑝𝑝)
  

= 𝐶𝐶11(𝑑𝑑,𝑝𝑝)𝑑𝑑2𝑝𝑝1

𝑒𝑒𝑑𝑑𝑥𝑥
∑ ∑ (𝑑𝑑𝑑𝑑)𝑛𝑛

�2𝑝𝑝2�𝑛𝑛

2𝑘𝑘−1
𝑛𝑛=0

�𝑝𝑝1�𝑘𝑘
𝑘𝑘!𝑑𝑑2𝑘𝑘

∞
𝑘𝑘=0  (35) 

In (34) we applied Progri (2016, [1]) (105) and we obtain the 
same answer as in Progri (2016, [1]) (111) and (113). 

Equation (35) is identical to Progri (2016, [1]) (112). 
In (34) we can apply the CFEs of the RIGF that are carefully 

examined in Progri (2022, [15]). 

𝛾𝛾(2𝑝𝑝1,𝑑𝑑𝑥𝑥) =
(𝑑𝑑𝑑𝑑)(2𝑝𝑝1)Φ� 2𝑝𝑝1

2𝑝𝑝1+1;−𝑑𝑑𝑑𝑑�
(2𝑝𝑝1)Γ(2𝑝𝑝1)

; 0 ≤ 𝑑𝑑𝑥𝑥 < 1  

=
(𝑑𝑑𝑑𝑑)(2𝑝𝑝1)Φ� 2𝑝𝑝1

2𝑝𝑝1+1;−𝑑𝑑𝑑𝑑�

Γ(2𝑝𝑝2)
; 0 ≤ 𝑑𝑑𝑥𝑥 < 1   

=
(𝑑𝑑𝑑𝑑)(2𝑝𝑝1)𝑒𝑒−𝑡𝑡𝑥𝑥Φ� 1

2𝑝𝑝1+1;𝑑𝑑𝑑𝑑�
(2𝑝𝑝1)Γ(2𝑝𝑝1)

; 0 ≤ 𝑑𝑑𝑥𝑥 < 20   

=
(𝑑𝑑𝑑𝑑)(2𝑝𝑝1)𝑒𝑒−𝑡𝑡𝑥𝑥Φ� 1

2𝑝𝑝1+1;𝑑𝑑𝑑𝑑�

Γ(2𝑝𝑝2)
; 0 ≤ 𝑑𝑑𝑥𝑥 < 20   

= 1−
(𝑑𝑑𝑑𝑑)2𝑝𝑝 ∑

(−1)𝑘𝑘(1−2𝑝𝑝1)𝑘𝑘
(𝑡𝑡𝑥𝑥)𝑘𝑘

𝑀𝑀
𝑘𝑘=0

𝑒𝑒𝑡𝑡𝑥𝑥Γ(2𝑝𝑝1)
; 20 ≤ 𝑑𝑑𝑥𝑥 < ∞ (36) 

Substituting (36) into (34) produces the solution for 
𝐾𝐾1(𝑑𝑑, 𝑝𝑝, 𝑥𝑥) 

𝐿𝐿1(𝑑𝑑, 𝑝𝑝, 𝑥𝑥) = Φ�
2𝑝𝑝1

2𝑝𝑝1 + 1;−𝑑𝑑𝑥𝑥�; 0 ≤ 𝑑𝑑𝑥𝑥 < 1  

≅
(𝑑𝑑𝑑𝑑)(2𝑝𝑝1)∑ (−1)𝑛𝑛(2𝑝𝑝1)𝑛𝑛(𝑡𝑡𝑥𝑥)𝑛𝑛

(2𝑝𝑝2)𝑛𝑛𝑛𝑛!
𝑁𝑁
𝑛𝑛=0
Γ(2𝑝𝑝2)

 (37) 

𝐿𝐿1(𝑑𝑑, 𝑝𝑝, 𝑥𝑥) =
Φ� 1

2𝑝𝑝1+1;𝑑𝑑𝑑𝑑�
(𝑑𝑑𝑑𝑑)−(2𝑝𝑝1)Γ(2𝑝𝑝2)𝑒𝑒𝑡𝑡𝑥𝑥; 0 ≤ 𝑑𝑑𝑥𝑥 < 20 (38) 

𝐿𝐿1(𝑑𝑑, 𝑝𝑝, 𝑥𝑥) = 1−
∑

(1−2𝑝𝑝1)𝑘𝑘
(−1)−𝑘𝑘(𝑡𝑡𝑥𝑥)𝑘𝑘

𝑀𝑀
𝑘𝑘=0

(𝑑𝑑𝑑𝑑)−2𝑝𝑝𝑒𝑒𝑡𝑡𝑥𝑥Γ(2𝑝𝑝1)
; 20 ≤ 𝑑𝑑𝑥𝑥 < ∞ (39) 

Equations (32)-(34), (36)-(39) provide the CFEs of the 
GBFD1K for non-integer values of a parameter 𝑝𝑝. 

It turns out that (36) or (38) and (39) are only useful for 
values of 24 ≤ 𝑑𝑑𝑥𝑥 < ∞. Therefore, in constructing the fastest 
(i.e., the most computationally efficient algorithm) and the 
most accurate algorithm I propose the Progri landmark efficient 
computation of the GBFD1K for non-integer values of a 
parameter, 𝑝𝑝 as follows: 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) = � (1) 0 ≤ 𝑥𝑥 <  24ii

(33) 24 ≤ 𝑥𝑥 < ∞
; (40) 

It appears that the Progri landmark efficient computation of 
the GBFD1K for non-integer values of a parameter, 𝑝𝑝  was 
derived entirely in Progri (2016, [1]) (88) and (113). I just was 
never able to test all the possible options at that time. The main 
purpose of this publication is to show once more that all the 
derivations in Progri (2016, [1]) are correct. It is that the contest 
of these CFEs needed to be clarified. 
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4 Kampé de Fériet Reduction Formulae 

Landmark computation of the GBFD1K via Kampé de Fériet 
functions and the landmark efficient computation of the 
GBFD1K for non-integer values of a parameter provide the 
opportunity to produce more reduction formulae of the Kampé 
de Fériet functions. 

Equating (1) with (7) produces for values of 0 ≤ 𝑥𝑥 < 1 as 
follows 

𝐾𝐾1𝑒𝑒(𝑥𝑥,𝑑𝑑, 𝑝𝑝) − 𝑑𝑑𝑑𝑑𝑝𝑝1𝐾𝐾1𝑜𝑜(𝑑𝑑,𝑑𝑑,𝑝𝑝)
𝑝𝑝2

=
∑

𝛾𝛾(2𝑝𝑝1+2𝑘𝑘,𝑡𝑡𝑥𝑥)(𝑝𝑝1)𝑘𝑘
1

𝑡𝑡2𝑘𝑘
𝑘𝑘!

∞
𝑘𝑘=0

√𝜋𝜋𝑑𝑑2
𝑝𝑝1Γ−1(𝑝𝑝3)Γ−1(𝑝𝑝2)

 (41) 

Similarly, equating (1) with (16) yields for values of 0 ≤
𝑥𝑥 < 37 as given below 

𝐾𝐾2𝑒𝑒(𝑥𝑥,𝑑𝑑,𝑝𝑝) + √𝑑𝑑2𝐾𝐾2𝑜𝑜(𝑑𝑑,𝑑𝑑,𝑝𝑝)
𝑝𝑝2

=
∑

𝛾𝛾(2𝑝𝑝1+2𝑘𝑘,𝑡𝑡𝑥𝑥)(𝑝𝑝1)𝑘𝑘
1

𝑡𝑡2𝑘𝑘
𝑘𝑘!

∞
𝑘𝑘=0

𝑒𝑒−𝑡𝑡𝑥𝑥√𝜋𝜋𝑑𝑑2
𝑝𝑝1Γ−1(𝑝𝑝3)Γ−1(𝑝𝑝2)

 (42) 

Next, equating (16) with (30) produces for values of 24 ≤
𝑥𝑥 < 37 as follows 

𝐾𝐾2𝑒𝑒(𝑥𝑥,𝑑𝑑,𝑝𝑝) + √𝑑𝑑2𝐾𝐾2𝑜𝑜(𝑑𝑑,𝑑𝑑,𝑝𝑝)
𝑝𝑝2

= 𝑒𝑒𝑡𝑡𝑥𝑥[𝛾𝛾(2𝑝𝑝1,𝑑𝑑𝑑𝑑)−𝐿𝐿2(𝑑𝑑,𝑝𝑝,𝑑𝑑)]

√𝜋𝜋𝑑𝑑2
𝑝𝑝1Γ−1(𝑝𝑝3)Γ−1(𝑝𝑝2)𝜌𝜌−1(𝑑𝑑,𝑝𝑝)

 (43) 

Finally, equating (1) with (27) we obtain for values of 37 ≤
𝑥𝑥 < ∞ as given below 

𝐾𝐾3𝑒𝑒(𝑑𝑑,𝑑𝑑,𝑝𝑝)+𝑝𝑝𝐾𝐾3𝑜𝑜(𝑥𝑥,𝑡𝑡,𝑝𝑝)
�𝑥𝑥2

𝑑𝑑
=

1−
∑

𝛾𝛾(2𝑝𝑝1+2𝑘𝑘,𝑡𝑡𝑥𝑥)(𝑝𝑝1)𝑘𝑘
1

𝑡𝑡2𝑘𝑘
𝑘𝑘!

∞
𝑘𝑘=0

𝜌𝜌−1(𝑡𝑡,𝑝𝑝)

2𝑝𝑝1𝐶𝐶11(𝑑𝑑,𝑝𝑝)𝑑𝑑2𝑝𝑝𝑒𝑒−𝑡𝑡𝑥𝑥
 (44) 

We cannot do any better than any of these formulae for the 
computation of the Kampé de Fériet functions. 

5 Numerical, Theoretical Results 

I made major improvements in the last six years since the first 
publication of Progri (2016, [1]) as it relates to the 
computational wisdom, knowledge, and understanding. 

I attempt to describe most of computational wisdom, 
knowledge, and understanding as it relates to the computation 
of the GBFD1K cdf either vial MATLAB BIF or Giftet BIF. 

In the current journal paper the truth (GBFD1K cdf) can be 
computed via two different ways: 
1. Via MATLAB integral BIF 
2. Via MATLAB gammainc BIF 

The linear approximation is eliminated in the landmark 
computation. The linear approximation was necessary in the 
beginning when I needed to understand the development of the 

computational models, their properties, singularities, etc. Once 
it served its purpose, the linear approximation is replaced with 
the computation via MATLAB gammainc BIF. 

The landmark computation of the RIGF produced another 
landmark of the GBFD1K is accomplished via three other 
options via Giftet: 
1. pgamainc MATLAB function. This is new computation 

that was neither published in Progri (2016, [1]) nor in 
Progri (2018, [5]). 

2. kamdefer MATLAB function. This option is only useful for 
values of 0 ≤ 𝑥𝑥 < 24  which is also a function of the 
non-integer parameter 𝑝𝑝 . Outside this interval the 
recursive implementation via the progril2 MATLAB 
function is much faster and more accurate than kamdefer 
MATLAB function will even be. 

3. pgamainc MATLAB function for 0 ≤ 𝑥𝑥 < 24  and 
progril2 MATLAB for 24 ≤ 𝑥𝑥 < ∞. 

Therefore, the landmark computation of the GBFD1K is 
performed via five different options. The MATLAB integral 
BIF is considered the truth. When Option one is equal to 
1. one via MATLAB gamainc BIF, 0 ≤ 𝑥𝑥 < ∞, 
2. two via Giftet pgamainc BIF, 0 ≤ 𝑥𝑥 < ∞, 
3. three via Giftet kamdefer BIF, 0 ≤ 𝑥𝑥 < 24  and Giftet 

progril2 BIF for 24 ≤ 𝑥𝑥 < ∞, 
4. four via Giftet pgamainc BIF for 0 ≤ 𝑥𝑥 < 24 and Giftet 

progril2 BIF for 24 ≤ 𝑥𝑥 < ∞. 
These options are explained further in great detail in the 

following five subsections. 

5.1 Computation of the GBFD1K cdf via MATLAB 
integral BIF 

The very first computation of the GBFD1K cdf in Progri 2016 
[1] was by means of the MATLAB integral BIF. 

However, the implementation of the MATLAB integral BIF 
required improvements of the GBFD1K pdf that was done in 
Progri (2022, [13]) as follows: 

𝑓𝑓GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) = �
𝑓𝑓(𝑥𝑥) 0 ≤ 𝑥𝑥 < 100

exp[log_𝑓𝑓(𝑥𝑥)] 100 ≤ 𝑥𝑥 < ∞ (45) 

Where 

𝑓𝑓(𝑥𝑥) = 𝑑𝑑𝑝𝑝𝑒𝑒−𝑥𝑥𝑡𝑡𝐼𝐼𝑝𝑝(𝑑𝑑)

𝐶𝐶1(𝑝𝑝,𝑑𝑑)
, 0 ≤ 𝑥𝑥 < 100 (46) 

log_𝑓𝑓(𝑥𝑥) = log[𝑓𝑓(𝑥𝑥)], 100 ≤ 𝑥𝑥 < ∞  
= 𝑝𝑝log𝑥𝑥 − 𝑥𝑥𝑑𝑑 + log𝐼𝐼𝑝𝑝(𝑥𝑥) − log_𝐶𝐶1 (47) 

𝐶𝐶1(𝑝𝑝,𝑑𝑑) = 2𝑝𝑝Γ(𝑝𝑝1)

√𝜋𝜋|1−𝑑𝑑2|𝑝𝑝1
 (48) 
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log_𝐶𝐶1 = 𝑝𝑝log2 + log[Γ(𝑝𝑝1)] − log(𝜋𝜋)
2

− log��1−𝑑𝑑2��
𝑝𝑝1
−1  (49) 

MATLAB has logbesseli BIF that is employed to compute 
log𝐼𝐼𝑝𝑝(𝑥𝑥)  and gammaln BIF that is also used to compute 
log[Γ(𝑝𝑝1)]. 

These improvements on the computation of the pdf will 
eliminate the singularities when the MATLAB integral BIF is 
used for values of 100 ≤ 𝑥𝑥 < ∞. 

Simulation results of the MATLAB integral BIF are shown 
in Figs. 1(a), (c), 2(a), (c), and 3(a) (top). 

Because the MATLAB integral BIF is not used specifically 
for the computation of the GBFD1K; hence, it is not expected 
to be fast; however, it is expected to be accurate. In Progri (2022, 
[15]), I provided sufficient detail that the MATLAB integral 
BIF is a better approximation of the RIGF than the MATLAB 
gammainc BIF for values of the parameter greater than one. 

5.2 Landmark Computation of the GBFD1K cdf via 
MATLAB gammainc BIF 

The decision to replace the linear approximation cdf with the 
MATLAB gammainc BIF was a very good decision. 

In the file Giftet progril2 subfunction1 the implementation 

of the MATLAB gammainc BIF is accomplished via three 
options which correspond to option 2 taking on three values; 
hence, then option 2 is equation to: 
1. one, it means that the implementation is accomplished 

using MATLAB BIF functions such as factorial, or 
pocchammer, etc. This option is needed in the beginning to 
make sure that the implementation of (1) is accurate for 
small values of x and a small number of terms. 

2. two, then the factorial, power, or pocchammer is 
implemented recursively. This option is supposed to be 
more accurate and faster than the first option because it 
eliminates the multiplication and division with very larger 
numbers. 

3. Three, then the use of recursive algorithm makes use of log 
and exp MATLAB BIF because the logarithm turns the 
product into a summation and the division into a 
subtraction. Since, it is faster to add and subtract numbers 
than to multiply and or divide; hence, this option is 
supposed to be faster than the first two options. 

 
(a) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [1 3 28 20], (bottom) cdf 3: 

pgammainc 𝑜𝑜𝑝𝑝 = [2 3 110 28], cdf 4: progril2 𝑜𝑜𝑝𝑝 = [4 3 120 28]. 

 
(b) (top) error between cdf 1: integral minus cdf 2: gammainc (a), (bottom) 

error between cdf 1: integral minus cdf 3: pgammainc (a); error between cdf 1: 

integral cdf 4: progril2. 

 
(c) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [1 3 28 20], (bottom) cdf 3: 

kamdefer 𝑜𝑜𝑝𝑝 = [3 4 28 80], cdf 4: progril2 𝑜𝑜𝑝𝑝 = [4 3 120 28]. 

 
(d) (top) error between cdf 1: integral minus cdf 2: gammainc (c), (bottom) error 

between cdf 1: integral minus cdf 3: kamdefer (c); error between cdf 1: integral 

minus cdf 4: progril2. 

Figure 1: GBFD1K pdf and cdf and cdf error for MATLAB BIF, integral, 

gammainc, and Giftet pgammainc, kamdefer, and progril2 for 𝑎𝑎 = 1, 𝑑𝑑 = 2, 

and 𝑝𝑝 = 1.5. 
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What are the main benefits of this option? Because the 
MATLAB gammainc BIF is already optimized for accuracy 
and speed, the only unknown to compute (1) is the number of 
terms. The third element in the option vector is the integer 
number, 𝐾𝐾, that denotes the number of terms to approximate (1). 

The option vector corresponding to the implementation of 
MATLAB gammainc BIF is as an example: the op vector looks 
as follows: 𝑜𝑜𝑝𝑝 = [1 1 28 20];  [1 2 28 20];  [1 3 28 20]. 

The first integer number 1 corresponds to option 1 equal to 
1 which means that MATLAB gammainc BIF is used; i.e., 
𝑜𝑜𝑝𝑝(1) = 1. 

The second integer number 1, 2, 3 correspond to option 2 
equal to 1, 2, 3; 𝑜𝑜𝑝𝑝(2) = {1,2,3}. 

The integer number 28 correspond to the number of terms 𝐾𝐾 
in (1); i.e., 𝑜𝑜𝑝𝑝(3) = 28. 

The integer number 20 is not needed for option 1 equal to 1. 
It is needed for options 1 equal to 2, 3, and 4. 

Simulation results of the MATLAB gammainc BIF are 
shown in Figs. 1(a), (c), 2(a), (c), and 3(a) (top). 

This option is supposed to be the fastest and the most 
accurate of all the options. Nevertheless, its performance on 
both speed and accuracy will be assessed in this section. 

5.3 Landmark Computation of the GBFD1K cdf via 
Giftet pgammainc Function 

 The landmark computation of the GBFD1K cdf via Giftet 
pgammainc function is an entirely new computation that 
resulted from Progri (2022, [15]). 

The option vector corresponding to the implementation of 
Giftet pgammainc BIF is as an example: the op vector looks as 
follows: 𝑜𝑜𝑝𝑝 = [2 1 120 28]; [2 2 120 28]; [2 3 120 28]. 

The first integer number 2 corresponds to option 1 equal to 
2 which means that Giftet pgammainc BIF is used; i.e., i.e., 
𝑜𝑜𝑝𝑝(1) = 2. 

The second integer number 1, 2, 3 correspond to option 2 
equal to 1, 2, 3 which are explained in Subsect. 5.3; i.e., 
𝑜𝑜𝑝𝑝(2) = {1,2,3}. 

The integer number 120 corresponds to the number of terms 
that are needed to approximate pgammainc (see Progri (2022, 
[15])); 𝑜𝑜𝑝𝑝(3) = 120. 

The integer number 28 correspond to the number of terms 𝐾𝐾 

 
(a) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [1 3 58 20], (bottom) cdf 3: 

pgammainc 𝑜𝑜𝑝𝑝 = [2 3 200 78], cdf 4: progril2 𝑜𝑜𝑝𝑝 = [4 3 150 68]. 

 
(b) (top) error between cdf 1: integral minus cdf 2: gammainc (a), (bottom) 

error between cdf 1: integral minus cdf 3: pgammainc (a); error between cdf 1: 

integral cdf 4: progril2. 

 
(c) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [1 3 58 20], (bottom) cdf 3: 

kamdefer 𝑜𝑜𝑝𝑝 = [3 4 78 100], cdf 4: progril2 𝑜𝑜𝑝𝑝 = [4 3 150 68]. 

 
(d) (top) error between cdf 1: integral minus cdf 2: gammainc (c), (bottom) error 

between cdf 1: integral minus cdf 3: kamdefer (c); error between cdf 1: integral 

minus cdf4: progril2. 

Figure 2: GBFD1K pdf and cdf and cdf error for MATLAB BIF, integral, 

gammainc, and Giftet pgammainc, kamdefer, and progril2 for 𝑎𝑎 = 1.5 , 𝑑𝑑 =

1.4, and 𝑝𝑝 = 1.7. 
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in (1); 𝑜𝑜𝑝𝑝(4) = 28. Since, 𝐾𝐾 was already optimized in Subsect. 
5.1 then it only remains to optimize 𝑜𝑜𝑝𝑝(3) = 120. 

Simulation results of the Giftet pgammainc BIF are shown 
in Figs. 1(a), 2(a) (bottom). 

This option is supposed to compete with MATLAB 
gammainc BIF in both performance accuracy and speed. 

5.4 Landmark Computation of the GBFD1K cdf via 
Giftet Kampé de Fériet Functions 

The landmark computation of the GBFD1K cdf via Giftet 

kamdefer function is a significantly improved computation that 
originated in Progri (2016, [1]) to Progri (2022, [15]). 

The option vector corresponding to the implementation of 
Giftet kamdefer BIF is as an example: the op vector looks as 
follows:  
𝑜𝑜𝑝𝑝 = [3 1 80 80];  [3 2 80 80];  [3 3 28 80];  [3 4 28 80]. 
The first integer number 3 corresponds to option 1 equal to 

3 which means that Giftet kamdefer BIF is used; i.e., 𝑝𝑝(1) = 3. 
The second integer number 1, 2, 3, 4 correspond to option 2 

equal to 1, 2, 3, 4 which are explained in Subsect. 5.3; i.e., 
𝑜𝑜𝑝𝑝(2) = {1,2,3,4} . Further details of the computation of the 
kamdefer the reader may find in Progri (2018, [5]), Appendix 
A. 

The integer number 80 or 28 corresponds to the number of 
terms that are needed in the outer summation of kamdefer (see 
Progri (2022, [15])), of terms 𝐾𝐾; 𝑜𝑜𝑝𝑝(3) = {80,28}. 

The integer number 80 corresponds to the number of terms 
in the inner summation in (1); 𝑜𝑜𝑝𝑝(4) = 80. 

In the current implementation of Giftet kamdefer function, 
when 𝑜𝑜𝑝𝑝(2) = {1,2} then 𝑜𝑜𝑝𝑝(3) is used for 𝑜𝑜𝑝𝑝(4);; it does not 
matter what 𝑜𝑜𝑝𝑝(4)  is; however, then 𝑜𝑜𝑝𝑝(2) = {3,4}  then 
𝑜𝑜𝑝𝑝(3) = 𝑜𝑜𝑝𝑝(4) or 𝑜𝑜𝑝𝑝(3) ≠ 𝑜𝑜𝑝𝑝(4).  This allowed for 𝑜𝑜𝑝𝑝(3) =
28 ; hence, reducing the computation time while maintaining 
the same performance as for 𝑜𝑜𝑝𝑝(3) = 80. 

The Giftet kamdefer function is only used for 0 ≤ 𝑥𝑥 ≤ 24, 
for values of 24 ≤ 𝑥𝑥 < ∞  the option 1 equal to 4 is used 
instead. This option is discussed extensively next. Although the 
computation via the Giftet kamdefer function is not expected to 
be as fast and as accurate as via either the MATLAB gammainc 
BIF or Giftet pgammainc BIF it is an option that is a unique 
computation and as such it should merit our attention of detail. 

Simulation results of the Giftet kamdefer BIF are shown in 
Figs. 1(c) and 2(c) (bottom). 

This option is reduced significantly when (26)-(28) occur. 

 
(a) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [13 60 20] , (bottom) cdf 3: 

progril1 𝑜𝑜𝑝𝑝 = [2 3 60 29], cdf4: progril1 𝑜𝑜𝑝𝑝 = [4 4 60 58]. 

 
(b) (top) error between cdf 1: integral minus cdf 2: gammainc (a), (bottom) 

error between cdf 1: integral minus cdf 3: progril1 (a); error between cdf 1: 

integral cdf4: progril1. 

 
(c) (top) same as (b); (bottom) same as (b) but 𝑜𝑜𝑝𝑝(2) = 4. 

Figure 3: GBFD1K pdf and cdf and cdf error for MATLAB BIF, integral, 

gammainc, and Giftet progril1 for 𝑎𝑎 = 1.5, 𝑑𝑑 = 1.4, and 𝑝𝑝 = 2. 

TABLE I: THE QUANTITATIVE COMPUTATIONAL PERFORMANCE 

GBFD1K cdf:  
CFE 1 int; CDF2 ginc; CDF2 pginc vs. CFE 4 pl2 

𝑎𝑎 = 1, 𝑑𝑑 = 2, 𝑝𝑝 = 1.5, 0 ≤ 𝑥𝑥 ≤ 100 ∑(⋅) = 28 terms 
integral (s) gammain (ms) pgammainc (ms) progril2 (ms) 

14.79 253.3 113.8 175.0 Op 3 
14.66 259.9 120.1 139.7 Op 4 

CFE 1 int; CDF2 ginc; CDF2 pginc vs. CFE 4 pl2 
𝑎𝑎 = 1.5, 𝑑𝑑 = 1.4, 𝑝𝑝 = 1.7, 0 ≤ 𝑥𝑥 ≤ 100 ∑(⋅) = 78 terms 

(s) (ms) (ms) (ms) 
12.86 787.3 600.2 593.6 Op 3 
12.86 783.9 599.1 606.7 Op 4 

CFE 1 int; CDF2 ginc; CDF2 pl1 vs. CFE 4 pl1 
𝑎𝑎 = 1.5, 𝑑𝑑 = 1.4, 𝑝𝑝 = 2.0, 0 ≤ 𝑥𝑥 ≤ 100 ∑(⋅) = 60 terms 

(sec) (ms) (ms) (ms) 
11.40 793.8 169.6 141.2 Op 3 
12.86 794.0 594.2 509.4 Op 4 
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The performance in both computation time and accuracy will 
be assessed and it should prove a good option as a result of the 
significantly new improvements that were made in this journal 
paper. 

5.5 Landmark Computation of the GBFD1K cdf via 
Progri (40) CFE 

The landmark computation of the GBFD1K cdf via Progri (40) 
CFE is meant to be the best performance in computation time 
and nearly as good a performance in accuracy as either 
MATLAB gammainc BIF or Giftet pgammainc BIF as 
discussed in Progri (2022, [15]). 

The option vector corresponding to the implementation of 
Giftet progril2 BIF is as an example: the op vector looks as 
follows:  

𝑜𝑜𝑝𝑝 = �[4 1 80 28];  [4 2 80 28];
 [4 3 120 28]; [4 4 120 28]. 

The first integer number 4 corresponds to option 1 equal to 
4 which means that Giftet (40) BIF is used; i.e., 𝑜𝑜𝑝𝑝(1) = 4. 

The second integer number 1, 2, 3, 4 correspond to option 2 
equal to 1, 2, 3, 4; i.e., 𝑜𝑜𝑝𝑝(2) = {1,2,3,4} ; When 𝑜𝑜𝑝𝑝(2) =
{1,2} then Giftet kamdefer function is used (see Subsect. 5.4), 
and then 𝑜𝑜𝑝𝑝(2) = {3,4}   then Giftet pgammainc function is 
used (see Subsect. 5.3). 

The third integer is the number of terms that is used either 
for Giftet kamdefer function; i.e., 𝑜𝑜𝑝𝑝(3) = 80  or Giftet 
pgammainc function; i.e., 𝑜𝑜𝑝𝑝(3) = 120. 

The fourth integer is the number of the number of terms 𝐾𝐾 in 
(1); i.e., 𝑜𝑜𝑝𝑝(3) = 28. 

As an example, when the simulation option vector is set to 
𝑜𝑜𝑝𝑝 = [4 3 120 28]  or 𝑜𝑜𝑝𝑝 = [4 4 120 28]  it is supposed to be 
the fastest and most accurate computation of the GBFD1K cdf 
via MATLAB. 

Simulation results of the Giftet progril2 BIF are shown in 
Figs. 1(a), (c) and 2(a), (c) (bottom). 

In the simulation results I will refer to the option vector and 
the reader should be able to understand why it was utilized and 
what it means. 

In Fig. 1 the computation of the GBFD1K pdf and cdf and 
cdf error for MATLAB BIF, integral, gammainc, and Giftet 
pgammainc, kamdefer, and progril2 for 𝑎𝑎 = 1, 𝑑𝑑 = 2, and 𝑝𝑝 =
1.5 is depicted. 
(a) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [1 3 28 20], 

(bottom) cdf 3: pgammainc 𝑜𝑜𝑝𝑝 = [2 3 110 28] , cdf 4: 
progril2 𝑜𝑜𝑝𝑝 = [4 3 120 28]. 

(b) (top) error between cdf 1: integral minus cdf 2: gammainc 

(a), (bottom) error between cdf 1: integral minus cdf 3: 
pgammainc (a); error between cdf 1: integral cdf 4: 
progril2. 

(c) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [1 3 28 20], 
(bottom) cdf 3: kamdefer 𝑜𝑜𝑝𝑝 = [3 4 28 80] , cdf 4: 
progril2 𝑜𝑜𝑝𝑝 = [4 3 120 28]. 

(d) (top) error between cdf 1: integral minus cdf 2: gammainc 
(c), (bottom) error between cdf 1: integral minus cdf 3: 
kamdefer (c); error between cdf 1: integral minus cdf 4: 
progril2. 

Figure 2 displays the computation of the GBFD1K pdf and 
cdf and cdf error for MATLAB BIF, integral, gammainc, and 
Giftet pgammainc, kamdefer, and progril2 for 𝑎𝑎 = 1.5 , 𝑑𝑑 =
1.4, and 𝑝𝑝 = 1.7. 
(a) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [1 3 58 20], 

(bottom) cdf 3: pgammainc 𝑜𝑜𝑝𝑝 = [2 3 200 78] , cdf 4: 
progril2 𝑜𝑜𝑝𝑝 = [4 3 150 68]. 

(b) (top) error between cdf 1: integral minus cdf 2: gammainc 
(a), (bottom) error between cdf 1: integral minus cdf 3: 
pgammainc (a); error between cdf 1: integral cdf 4: 
progril2. 

(c) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [1 3 58 20], 
(bottom) cdf 3: kamdefer 𝑜𝑜𝑝𝑝 = [3 4 78 100] , cdf 4: 
progril2 𝑜𝑜𝑝𝑝 = [4 3 150 68]. 

(d) (top) error between cdf 1: integral minus cdf 2: gammainc 
(c), (bottom) error between cdf 1: integral minus cdf 3: 
kamdefer (c); error between cdf 1: integral minus cdf4: 
progril2. 

When 𝑝𝑝 is a non-integer, the computation of the GBFD1K 
cdf via MATLAB gammainc BIF is the most accurate followed 
by Giftet progril2 BIF, followed by Giftet pgammainc BIF, and 
then Giftet kamdefer  BIF. 

Figure 3 illustrates the computation of GBFD1K pdf and cdf 
and cdf error for MATLAB BIF, integral, gammainc, and Giftet 
progril1 for 𝑎𝑎 = 1.5, 𝑑𝑑 = 1.4, and 𝑝𝑝 = 2. 
(a) (top) cdf 1: integral, cdf 2: gammainc 𝑜𝑜𝑝𝑝 = [13 60 20] , 

(bottom) cdf 3: progril1 𝑜𝑜𝑝𝑝 = [2 3 60 29], cdf4: progril1 
𝑜𝑜𝑝𝑝 = [4 4 60 58]. 

(b) (top) error between cdf 1: integral minus cdf 2: gammainc 
(a), (bottom) error between cdf 1: integral minus cdf 3: 
progril1 (a); error between cdf 1: integral cdf4: progril1. 

(c) (top) same as (b); (bottom) same as (b) but 𝑜𝑜𝑝𝑝(2) = 4. 
When 𝑝𝑝 is an integer, the computation of the GBFD1K cdf 

via Giftet progril1 BIF, is the most accurate followed by 
followed by MATLAB gammainc BIF. 
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In Tab. I, the quantitative computational performance of the 
simulation results of Figs. 1-3 are summarized. As illustrated 
from the results of Tab. 1, the MATLAB integral BIF is the 
slowest, followed by the MATLAB gammainc BIF. For the 
results generated for Fig. 1, Giftet pgammainc BIF is the fastest, 
and corresponding to the results of Fig. 2, Giftet progril2 BIF 
is the fastest. When the parameter p is an integer, the 
computation of the GBFD1K via Giftet progril1 BIF is faster 
than MATLAB gammainc BIF. 

6 Conclusions 

In this landmark journal paper, I have provided some of the 
most amazing derivations for computing the GBFD1K cdf via 
five options. 

In the first option the computation is done via MATLAB 
integral BIF. For this option to work for large values of the 
variable 𝑥𝑥 , the computation of the GBFD1K pdf needed 
modifications. Now even though the MATLAB integral BIF is 
slower than the all-other options it is an option that does not 
require a lot of other information such as number of terms or 
the option for other subfunctions within the option. The 
MATLAB integral BIF is only sensitive to the length of the 
vector and the total number of points of the vector, 𝑥𝑥. 

The second option is the computation of the GBFD1K cdf 
via MATLAB gammainc BIF in (1). The only modification this 
option needs is the number of terms 𝐾𝐾 . As shown from the 
simulation results and the computation time, the MATLAB 
gammainc BIF is just as good as the MATLAB integral BIF but 
fourteen times faster. 

The third option is the option via the GBFD1K cdf via Giftet 
pgammainc BIF in (1). This was an option that was developed 
as a result to investigate some of the issues related to the 
convergence of Progri (2018, [5]) for large values of the 
variable 𝑥𝑥. Details of this option are provided in Progri (2022, 
[15]). As indicated by both the simulation results and the 
computation speed, the Giftet pgammainc BIF is just as 
accurate and faster sometimes even twice as fast as the 
MATLAB gammainc BIF because it allows for optimization of 
the number of terms inside the pgammainc BIF. Nevertheless, 
this may be a drawback because it is currently perfomed 
manually; however, future work will aim towards optimization 
of this option. 

The fourth option is the computation of the GBFD1K cdf via 
the Giftet Kampé de Fériet Functions. All the issues related to 

the earlier convergence of this option were fully investigated 
and eliminated. This option was significantly improved as a 
result of adding simplifications for large values of 𝑥𝑥 . This 
option has added tremendous values to the body of wisdom, 
knowledge, and understanding that did not exist prior to Progri 
(2016, [1]). Although this option is much faster than the 
MATLAB integral BIF, it is not nearly as fast as the other 
options that were added that did not exist prior to Progri (2016, 
[1]). 

Finally, the last option is the computation of the GBFD1K 
cdf via the Giftet progril2 function. This option is supposed to 
be the best of the best because it is meant to provide a 
combination of the very best options from Giftet pgammainc 
BIF and Giftet Kampé de Fériet Functions. 

These options will continue to be investigated towards 
finding a better optimization algorithm that will be part of the 
Giftet Indoor Geolocation SystemsTheory and Simulation 
toolbox. 
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values of the parameter 𝛼𝛼. 

9 Appendix A: GBFD1K for Integer Values 

A modified expression of the GBFD1K for integer values of the 
parameter can be derived from (1). 

From Progri (2022, [15]) the RIGF can be written as in case 
 

i See Progri (2016, [1]) (104). 
ii  This bound is a function of the non-integer parameter 𝑝𝑝 . The larger the 
values of 𝑝𝑝 the larger the bound will be. 
iii  There is a false impression that only the research that is funded by the 
government bureaucrats is worthy of financial support, awards, & recognition. 
This is not to say that President Ronald Reagan wanted to demonize the role 

of integer parameter 𝑝𝑝: 

𝛾𝛾(2𝑝𝑝1+2𝑘𝑘,𝑑𝑑𝑑𝑑)
(2𝑝𝑝+2𝑘𝑘)!

= 1 −
𝑒𝑒−𝑡𝑡𝑥𝑥(𝑑𝑑𝑑𝑑)2𝑝𝑝+2𝑘𝑘 ∑ �2𝑝𝑝+2𝑘𝑘𝑛𝑛 �𝑛𝑛!(𝑑𝑑𝑑𝑑)−𝑛𝑛2𝑝𝑝+2𝑘𝑘

𝑛𝑛=0

(2𝑝𝑝+2𝑘𝑘)!
 (50) 

Substituting (51) into (1) yields 

𝐹𝐹GBessel1(𝑥𝑥; 𝑎𝑎,𝑑𝑑, 𝑝𝑝) = 𝜌𝜌(𝑑𝑑, 𝑝𝑝)∑
𝛾𝛾(2𝑝𝑝1+2𝑘𝑘,𝑑𝑑𝑑𝑑)(𝑝𝑝1)𝑘𝑘

1
𝑡𝑡2𝑘𝑘

𝑘𝑘!
𝐾𝐾
𝑘𝑘=0   

= 1 −
𝜌𝜌(𝑑𝑑,𝑝𝑝)√𝜋𝜋𝑑𝑑𝑑𝑑 ∑

𝑥𝑥1
𝑘𝑘

(𝑝𝑝2)𝑘𝑘
𝑘𝑘! ∑ �2𝑝𝑝+2𝑘𝑘𝑛𝑛 �𝑛𝑛!𝑥𝑥

−𝑛𝑛
𝑡𝑡𝑛𝑛

2𝑝𝑝+2𝑘𝑘
𝑛𝑛=0

𝐾𝐾
𝑘𝑘=0

Γ(𝑝𝑝1)Γ(𝑝𝑝2)𝑒𝑒𝑡𝑡𝑥𝑥
  

= 1 −
�𝑑𝑑2−1�

𝑝𝑝1𝑑𝑑1
𝑝𝑝 ∑

𝑥𝑥1
𝑘𝑘

(𝑝𝑝2)𝑘𝑘
𝑘𝑘! ∑ �2𝑝𝑝+2𝑘𝑘𝑛𝑛 �𝑛𝑛!𝑥𝑥

−𝑛𝑛
𝑡𝑡𝑛𝑛

2𝑝𝑝+2𝑘𝑘
𝑛𝑛=0

𝐾𝐾
𝑘𝑘=0

𝑑𝑑�12�𝑝𝑝
𝑝𝑝!𝑒𝑒𝑡𝑡𝑥𝑥

 (51) 

Equation (51) is implemented in Giftet progril1 MATLAB 
BIF. 

of the government as an enterprise, or resource, or originator of many 
inventions. But, when the government spending is abused for wasteful 
spending of the taxpayers trillions of $ dollars, and moreover, when it controls 
and suppresses innovation and ignores or completely denies funding to 
innovators and incubators based on political beliefs, then said President 
Ronald Reagan this type of government is the problem. 
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